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TILE-BASED COMPRESSION AND
DECOMPRESSION FOR GRAPHIC
APPLICATIONS

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/856,389, filed Apr. 3, 2013, and entitled Tile-Based
Compression and Decompression for Graphic Applications,
which is hereby incorporated herein by reference in their
entirety.

BACKGROUND

1. Field of the Invention

This invention relates to systems and methods for com-
pressing and decompressing image data

2. Background of the Invention

Modern graphics engines typically render or compose
images into a frame buffer, which is usually the system
memory or DDR. In many such systems, the graphic hard-
ware and system memory are not on the same die. Graphic
hardware is also often pushed to its limit to process higher
resolution, complex graphics, as well as dealing with mul-
tiple sources and targets for graphics data.

As a result, increasing amounts of data need to be moved
around the graphics and other sub-systems very quickly.
Moving large amounts of data at very high speed presents
challenges with respect to power, thermal, and performance
requirements. It is therefore crucial to reduce bandwidth
required for data moving in and out of the system memory.
Many systems are operable to compress data, store it, and
then un-compress the data when it is needed.

The systems and methods described herein provide an
improved approach for incorporating compression and
decompression of image data into a graphics processing
system.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be
readily understood, a more particular description of the
invention briefly described above will be rendered by ref-
erence to specific embodiments illustrated in the appended
drawings. Understanding that these drawings depict only
typical embodiments of the invention and are not therefore
to be considered limiting of its scope, the invention will be
described and explained with additional specificity and
detail through use of the accompanying drawings, in which:

FIG. 1 is a schematic block diagram of a computing
system suitable for implementing methods in accordance
with embodiments of the invention;

FIG. 2 is a schematic block diagram of a components of
graphics and display processing system in accordance with
an embodiment of the invention;

FIG. 3 is a process flow diagram of a method for in-line
decompression of graphics data in accordance with an
embodiment of the invention;

FIG. 4 is a process flow diagram of a method for com-
pressing graphics data in accordance with an embodiment of
the invention;

FIG. 5 is a process flow diagram of a method for calcu-
lating a symbol for a pixel error in accordance with an
embodiment of the invention;

FIG. 6 is a process flow diagram of a method for coding
a symbol for a pixel error in accordance with an embodiment
of the invention;
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FIG. 7 is a process flow diagram of a method for coding
least significant bits of a pixel error in accordance with an
embodiment of the invention;

FIG. 8 is a process flow diagram of a method for decoding
compressed graphics data in accordance with an embodi-
ment of the invention;

FIG. 9 is a process flow diagram of a method for extract-
ing a symbol from compressed graphics data in accordance
with an embodiment of the invention;

FIG. 10 is a process flow diagram of a method for
decoding an interleaved error extracted from compressed
graphics data in accordance with an embodiment of the
invention;

FIG. 11 is a process flow diagram of a method for
extracting a final pixel value from decompressed error data;

FIG. 12 is a process flow diagram of a method for
formatting compressed tile data for streaming in accordance
with an embodiment of the invention; and

FIG. 13 is a process flow diagram of a method for
compressing graphics data including alpha values in accor-
dance with an embodiment of the invention.

DETAILED DESCRIPTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the invention, as
represented in the Figures, is not intended to limit the scope
of the invention, as claimed, but is merely representative of
certain examples of presently contemplated embodiments in
accordance with the invention. The presently described
embodiments will be best understood by reference to the
drawings, wherein like parts are designated by like numerals
throughout.

The invention has been developed in response to the
present state of the art and, in particular, in response to the
problems and needs in the art that have not yet been fully
solved by currently available apparatus and methods.
Accordingly, the invention has been developed to provide
apparatus and methods for compressing an image frame in
a plurality of tiles. The tiles may have a size equal to a buffer
size of a device in a graphics system, such as a line buffer.
Tiles may further be formatted such that the tile may be
decompressed as the data of the tile is streamed between
devices, such as by an in-line decoder.

In most use cases of graphics rendering or composition,
only small portion of an entire image or frame needs to be
changed or updated. Many traditional image or video com-
pression work on a line-by-line or frame-by-frame basis.
Those compression techniques are well suited for images,
which are already available in full-frame or full-line for
compression to be performed, such as a video frame or a still
picture frame, which can be stored and played back repeat-
edly. However, in many instances a graphical two-dimen-
sional or three-dimensional frame is generated live as each
frame is rendered and sent for display only once. For
example, a graphical user interface may need to be generated
again after screen touch, or other interaction, by a user and
then re-displayed on screen.

A graphical image or frame is usually mapped onto
specific memory locations with a certain access pattern. In
embodiments disclosed herein, a frame may be gridded into
tiles such that only certain affected tiles need to be updated
and the corresponding memory locations changed. Each tile
may then be compressed and decompressed individually to
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provide both flexibility and a high compression ratio. The
size and aspect ratio of each tile may be selected to improve
the efficiency of memory access and overall system perfor-
mance. Experiments conducted by the inventor have found
that the methods disclosed herein can achieve a compression
efficiency of 10.05 bits per 24 bit pixel for eight test images
and a 32 byte burst and 12.19 bits per pixel for eight test
images with a 64 byte burst.

Experiments conducted by the inventor have also found
certain factors useful in selecting a tile size. For example,
experiments conducted by the inventor have shown that a
tile that covers a span of 16 to 64 pixels is suited for many
applications, especially in graphics composition. In many
systems, a display sub-system will need to process pixels
line-by-line in real time with a given refresh rate. The pixel
data is typically stored in line buffers, which are on-chip
memories that reside locally near the display sub-system.
The line buffers generally will have limited size such that
they can hold very few lines of pixels at a time, e.g. 1 or 2
lines. Accordingly, a height of a tile may advantageously be
limited to 1 or 2 pixels tall per tile, e.g. the number of lines
in the line buffer. Therefore, a tile size of 8-64 pixels
horizontally (e.g. a width of the line buffer) by 1-2 pixels
vertically may advantageously make effective use of a line
buffer of limited capacity dimension.

Given that many DDR (double data rate) memory
accesses are constrained to be 256 bytes aligned, the bound-
aries of tiles may advantageously be constrained to lie on
256 byte boundaries. Inasmuch as pixels typically include
32 bits (4 bytes) of data per pixel, there will be 64 pixels per
256 bytes memory data. Accordingly, matching this 64-pixel
constraint may advantageously include using tile dimen-
sions of 64x1 or 32x2. Where an image has dimensions that
are not a multiple of a tile size, a last pixel in a row may be
repeated to populate a tile.

Each tile of an image or a frame may be compressed and
decompressed individually. Each compressed tile data may
be transferred and written into memory locations that are
aligned with subsequence tiles. For prior compression algo-
rithms, it is difficult to obtain a significant compression ratio
for small data blocks, such as on the order of tiles described
herein. The systems and methods described herein provide
large compression ratios for tiles on the order of, for
example 64x1, 32x2, 16x4, and 8x8 pixels, as well as for
other tile sizes.

In some embodiments, in addition to tile data for tiles
constituting a frame, a header, or tile status data, may also
be associated with a frame and contain compression infor-
mation. The header may contain a small amount of data and
be stored in memory with the tiles of a frame. The display
controller may be operable to fetch this tile status data from
memory and request compressed tiles for the frame. The
tiles may then be decompressed and returned to the display
controller line-by-line.

Systems and methods for decompressing tiles in a graph-
ics system are described in greater detail below.

Embodiments in accordance with the present invention
may be embodied as an apparatus, method, or computer
program product. Accordingly, the present invention may
take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.), or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “module” or “system.” Furthermore,
the present invention may take the form of a computer
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program product embodied in any tangible medium of
expression having computer-usable program code embodied
in the medium.

Any combination of one or more computer-usable or
computer-readable media may be utilized. For example, a
computer-readable medium may include one or more of a
portable computer diskette, a hard disk, a random access
memory (RAM) device, a read-only memory (ROM) device,
an erasable programmable read-only memory (EPROM or
Flash memory) device, a portable compact disc read-only
memory (CDROM), an optical storage device, and a mag-
netic storage device. In selected embodiments, a computer-
readable medium may comprise any non-transitory medium
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.

Computer program code for carrying out operations of the
present invention may be written in any combination of one
or more programming languages, including an object-ori-
ented programming language such as Java, Smalltalk, C++,
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on a computer system as a stand-alone software
package, on a stand-alone hardware unit, partly on a remote
computer spaced some distance from the computer, or
entirely on a remote computer or server. In the latter
scenario, the remote computer may be connected to the
computer through any type of network, including a local
area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

The present invention is described below with reference
to flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the invention. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions or code. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a non-transitory computer-readable medium that can
direct a computer or other programmable data processing
apparatus to function in a particular manner, such that the
instructions stored in the computer-readable medium pro-
duce an article of manufacture including instruction means
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other pro-
grammable apparatus provide processes for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.
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FIG. 1 is a block diagram illustrating an example com-
puting device 100. Computing device 100 may be used to
perform various procedures, such as those discussed herein.
Computing device 100 can function as a server, a client, or
any other computing entity. Computing device can perform
various monitoring functions as discussed herein, and can
execute one or more application programs, such as the
application programs described herein. Computing device
100 can be any of a wide variety of computing devices, such
as a desktop computer, a notebook computer, a server
computer, a handheld computer, tablet computer and the
like.

Computing device 100 includes one or more processor(s)
102, one or more memory device(s) 104, one or more
interface(s) 106, one or more mass storage device(s) 108,
one or more Input/Output (I/0) device(s) 110, and a display
device 130 all of which are coupled to a bus 112. Process-
or(s) 102 include one or more processors or controllers that
execute instructions stored in memory device(s) 104 and/or
mass storage device(s) 108. Processor(s) 102 may also
include various types of computer-readable media, such as
cache memory.

Memory device(s) 104 include various computer-readable
media, such as volatile memory (e.g., random access
memory (RAM) 114) and/or nonvolatile memory (e.g.,
read-only memory (ROM) 116). Memory device(s) 104 may
also include rewritable ROM, such as Flash memory.

Mass storage device(s) 108 include various computer
readable media, such as magnetic tapes, magnetic disks,
optical disks, solid-state memory (e.g., Flash memory), and
so forth. As shown in FIG. 1, a particular mass storage
device is a hard disk drive 124. Various drives may also be
included in mass storage device(s) 108 to enable reading
from and/or writing to the various computer readable media.
Mass storage device(s) 108 include removable media 126
and/or non-removable media.

1/0O device(s) 110 include various devices that allow data
and/or other information to be input to or retrieved from
computing device 100. Example /O device(s) 110 include
cursor control devices, keyboards, keypads, microphones,
monitors or other display devices, speakers, printers, net-
work interface cards, modems, lenses, CCDs or other image
capture devices, and the like.

Display device 130 includes any type of device capable of
displaying information to one or more users of computing
device 100. Examples of display device 130 include a
monitor, display terminal, video projection device, and the
like.

Interface(s) 106 include various interfaces that allow
computing device 100 to interact with other systems,
devices, or computing environments. Example interface(s)
106 include any number of different network interfaces 120,
such as interfaces to local area networks (LLANs), wide area
networks (WANSs), wireless networks, and the Internet.
Other interface(s) include user interface 118 and peripheral
device interface 122. The interface(s) 106 may also include
one or more user interface elements 118. The interface(s)
106 may also include one or more peripheral interfaces such
as interfaces for printers, pointing devices (mice, track pad,
etc.), keyboards, and the like.

Bus 112 allows processor(s) 102, memory device(s) 104,
interface(s) 106, mass storage device(s) 108, and 1/O
device(s) 110 to communicate with one another, as well as
other devices or components coupled to bus 112. Bus 112
represents one or more of several types of bus structures,
such as a system bus, PCI bus, IEEE 1394 bus, USB bus, and
so forth.
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For purposes of illustration, programs and other execut-
able program components are shown herein as discrete
blocks, although it is understood that such programs and
components may reside at various times in different storage
components of computing device 100, and are executed by
processor(s) 102. Alternatively, the systems and procedures
described herein can be implemented in hardware, or a
combination of hardware, software, and/or firmware. For
example, one or more application specific integrated circuits
(ASICs) can be programmed to carry out one or more of the
systems and procedures described herein.

Referring to FIG. 2, a computing device, such as the
computing device 100 may incorporate a graphics system
200 including some or all of the illustrated components
along with any other components used for graphics process-
ing known in the art.

The graphics system 200 may include a display controller
202 coupled to a display 130. As known in the art, a display
controller 202 may be operable to convert a frame of pixels
into digital or analog video signals for invoking display of
a representation of the frame on the display 130. The display
controller 202 may include a pixel domain 206 to facilitate
synchronous transmission of pixel data to the display 130
according to the digital visual interface (DVI) protocol, or
some other protocol.

The display controller 202 may communicate with one or
more devices by means of a bus, such as cache coherent bus
architecture like the advanced extensible interface (AXI)
specification. The display controller 202 may include an
AXI domain 208 to facilitate synchronous communication
over the AXI bus. The AXI specification permits burst based
transactions based only on a start address. As will be
described in greater detail below streaming of data in burst
mode may advantageously be performed using compressed
tile data.

The display controller 202 may be operably coupled to an
AXI interconnect fabric 210 that may connect other devices
to the display controller 202 and to one another. For
example, the AXI interconnect fabric 210 may connect to a
memory controller 212, graphic core 214, and any other
client devices 216.

In many applications, a graphic core 214 may include a
codec 218 that is used for compression and decompression
of image and video data. In many instances, the codec 218
may be from a different vendor than the display controller
202 and accordingly is not readily used by the display
controller 202 for performing compression and decompres-
sion of video data.

As will be described in greater detail below, tile-based
compression and decompression methods described herein
may advantageously use a decoder 220 interposed between
the AXI interconnect fabric 210, or some other interface to
a memory device, and the display controller 202. The
decoder 220 may communicate with the AXI domain 206 of
the domain controller. That is to say that the data from the
decoder 220 may transparently transmit decompressed pix-
els to the display controller 202 in the context of commu-
nication according to the AXI protocol. As is also described
herein, the decoder 220 may advantageously perform
streaming decompression of pixel data transmitted to the
display controller that is transparent to the display controller
202 thereby facilitating rapid rendering of pixel data while
reducing the amount of memory required to store the pixel
data.

For example, FIG. 3 illustrates a high-level method 300
by which compressed pixel data stored in a memory device
114 may be streamed to a display controller 202, or other
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device such as a graphic core 212. A more detailed descrip-
tion of the steps of the method 300 is included below.

When a device accesses a particular pixel location, the
corresponding tile may then be decompressed. For example,
in the context of the system 200 of FIG. 2, the method 300
may include fetching 302 a tile header. The tile header may
include information describing tiles of a frame such as the
size of each compressed tiled, a starting address for each tile,
a range of memory locations in which the tiles of a frame are
stored, or other data. In some embodiment, each tile has a
tile status value, e.g. 4 bits. Values of 1 to 8 for the tile status
value indicate how many 32-bytes are required to decode the
tile, e.g. a compressed tile size. For color format RGB88S,
a tile status value of 6 may indicate that a tile includes raw
RGB888 data. RGBa8888 data, the value of 6 may indicate
compressed data and a tile status value of 8 may indicate that
a tile includes raw RGBa8888 data. The step of fetching 302
the tile header may be performed by a requesting device,
such as the display controller 202, in the process of retriev-
ing pixel data for rendering a frame on a display 130. The
request for the tile header may be directed to the memory
controller 212 by way of the AXI interconnect fabric 210.

Using the tile header, the requesting device may then
generate 304 read requests for pixels within the tile, or
request entire tiles, of a frame. For example, the requesting
device may request a number of bytes corresponding to a
next tile in the frame, where the number of bytes in the tile
is indicate by tile status data for the tile. The read requests
may be transmitted to the memory controller 212. As the
memory controller 212 responds to the read requests, a
compressed data stream corresponding to the read requests
may be streamed 306 to the requesting device through the
decoder 220 that is operable to decode the data stream in real
time. A method for decoding the compressed data stream is
described in greater detail below. The decoder then returns
308 the decompressed data to the requesting device. As
noted above, the AXI interface provides for burst data
transfer whereby a data request need only specify a starting
address. In some embodiments, a burst transfer of a com-
pressed tile may be transmitted through the decoder, decom-
pressed by the decoder, and the decompressed data trans-
mitted to the requesting device in a transparent manner. As
will be described in greater detail below, compressed tiles
may be one or both of stored and transmitted in a manner
that allows for streaming decompression of individual pixels
within the tile.

FIG. 4 illustrates a method 400 for compressing a tile of
pixels. In particular, the method 400 illustrates a method for
compressing an individual pixel (a “current pixel”) of a tile,
which may be repeated for all pixels of a tile exclusive of an
initial pixel. The method 400 may be executed by an
electronic device within a graphics system or such as within
a graphics core 212 or some other processor.

The method 400 may include calculating 402 an error of
the current pixel relative to a predicted pixel. The predicted
pixel may include a preceding pixel in a tile. The initial pixel
of a tile may be included in a compressed tile without
compression. Calculating the error may include calculating
errors for each component (RGB or RGBa) relative to the
corresponding component of the predicted pixel. Accord-
ingly, the error may be an array of errors OrgError[i]=
Current[i]-Predicted[i], where i is a value from 0 to 2,
corresponding to red, green, and blue components for RGB
and from 0 to 3 for RGBa, where the fourth value represents
the alpha error.

The method 400 may include performing 404 a color
transformation of the errors (OrgError[i]). For example, a
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reversible color transformation (RCT) Error[i] may be per-
formed as follows: Error[2]=OrgError[2]-OrgError[1];
Error[1]=OrgError[ 1]-OrgError[0]; Error[0]=OrgError{0].
The RCT transformation results in a savings of almost one
bit per pixel or about 8% of the bandwidth for natural
images.

The method 400 may include generating 406 an inter-
leaved error for the color-transformed error. In particular,
generating 406 the interleaved error may include interleav-
ing the absolute values of the color-transformed errors. For
example where AbsError[i]=Abs(Error[i]), andR,, . . . R, are
the bits of AbsError[0], G,, . . . G, are the bits of AbsError|[1],
and B, . . . B, are the bits of AbsError[2], the interleaved
error may be expressed as PackAbsError=R G, B, R, |G, ,
B, ... RyG,B,. Stated differently, the i-th bit of PackAb-
sError is the (i/3)-th bit of AbsError[i %3]. A size may also
be determined for the interleaved error. The size may be
expressed as PackAbsErrorSize=[.eadingOnePosition(Pack-
AbsError)+1. For example, if the interleaved error is 10010,
PackAbsErrorSize is 5. If PackAbsErrror is equal to zero its
size is also zero.

The method 400 may include calculating 408 a symbol for
the interleaved error and coding 410 the symbol. A method
for calculating 408 the symbol is described below with
respect to FIG. 5. Coding 410 the symbol may include using
a variable length coding (VLC) method that can take advan-
tage of the fact that the interleaved error is variable in size.
In the illustrated example, Huffman coding is used. A
method for coding 410 the symbol is described below with
respect to FIG. 6.

As will be described in greater detail below, the symbol
and coding of the symbol may not encode all of the bits of
the interleaved error. Accordingly, the method 400 may
include coding 412 the un-encoded least significant bits
(LSB) of the interleaved error (e.g. PackAbsError). A
method for coding 412 the LSB of the interleaved error is
described in greater detail below with respect to FIG. 7.

As noted above, the interleaved error may include inter-
leaved absolute values of errors, or color-transformed errors,
as described above. Accordingly, the method 400 may
include coding 414 signs of the errors. Inasmuch as whether
a particular error (e.g. color-transformed error) is zero or
non-zero can be readily determined by de-interleaving the
interleaved error, coding 414 the signs for the errors may
include only including sign bits for non-zero errors. For
example a bit for each non-zero error may be included in a
sign string, with O representing a positive sign and 1
representing a negative sign. In some embodiments no sign
bit is included in the sign string for errors that are included
in their raw form. As described in greater detail below,
where the interleaved error is above a certain value, the raw
pixel data is used to represent the pixel in a compressed tile.

The coded symbol, coded L.SB, and coded signs may then
be stored in a compressed tile as a representation of the pixel
that is the subject of the method 400. An initial pixel for a
tile and remaining pixels compressed according to the
method 400 may comprise the compressed representation of
a tile, such as a tile of a frame composed of a plurality of
tiles.

FIG. 5 illustrates a method 500 for coding a symbol for
some or all of the bits of an interleaved error, e.g. PackAb-
sError equal to X and having a size S. The illustrated method
500 is for pixels including 24 bits of color, i.e. 8 bits each
for red, green, and blue. Once skilled in the art will recog-
nize that the illustrated values can be readily modified for
larger or smaller pixels.
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For example, if S is found 502 to be not greater than or
equal to 4, the symbol (Sym) may be calculated 504 as equal
to X. Otherwise, if S is found 506 to be not greater than or
equal to 7, then Sym may be calculated 508 as S*2+(X&1).
Otherwise, if S is not found 510 to be greater than 17, the
Sym may be calculated 512 as S+7. Otherwise, if S is greater
than or equal to 17, then Sym may be calculated as being
equal to 24.

Referring to FIG. 6, the symbol, such as a symbol
determined according to FIG. 5, may be coded using a
variable length coding (VLC) method, such as Huffman
coding. For example, the method 600 may include evaluat-
ing 602 whether Sym is equal to zero. If so, then the symbol
may be coded as being equal to zero, or two zero bits 00.

Otherwise, the method 600 may include VL.C coding the
symbol. For example, the symbol may be encoded with a
first portion equal to HuffmanTable[0][Sym] and a second
portion equal to HuffmanTable[1][Sym]. For example, a
value Code of length N may be calculated 606 as Code[N-
1~N-2]=Floor((Sym-1)/8+1) and Code[N-3~0]=(Sym-1)
%S8. In the illustrated method N is equal to 5. However other
lengths may also be used, depending on the size of the pixels
being compressed.

Referring to FIG. 7, as noted above, the symbol and the
coded representation thereof may not encoded the entirety of
the interleaved error. Accordingly, the method 700 of FIG.
7 may be used to encode the least significant bits, if any not
encoded by the coded symbol. For example, if the symbol
(e.g. Sym from FIG. 5) is found 702 not to be less than 24,
the raw RGB values may be output 704, e.g. the compressed
version of the pixel will simply be the RGB values for the
pixel.

Otherwise, if Sym is found 706 not to be less than 14, then
the value X[S-2~0] may be output 710 (e.g. all but the
leading bit of the interleaved error, PackAbsError=X). Oth-
erwise, if Sym is not found 710 to be less than 4, then the
value X>>1 [S-3~0] may be output 712, e.g. all but the
leading bit of X right shifted by one bit. Otherwise, if Sym
is found to be less than 4, no bits are output 714 to encoded
the LSB of the interleaved error. As noted above, the recited
values are exemplary only and will be different for pixels of
different sizes.

FIG. 8 illustrates a process 800 of decompressing a pixel
compressed according to the foregoing methods. In general,
decompressing a pixel is the reverse of the process of
compression. In particular, the encoded symbol is decoded
802 and the interleaved error is obtained 804 from the
symbol. Sign bits for any non-zero errors are extracted 806.
Where the interleaved error is the result of a color transform,
such as RCT, an inverse color transform is performed 808 on
the interleaved error to obtain absolute values of the indi-
vidual error components (e.g. OrgError[i], above). The indi-
vidual error components are then signed according to the
extracted sign bits and are then combined 810 with, e.g.
added to, the predicted pixel to obtain the original pixel. As
noted above, where the symbol (Sym) indicates a pixel in its
raw form is to be used, no sign bits will be included for that
pixel.

FIG. 9 illustrates a method 900 for extracting a symbol
from a bitstream, such a stream of bits from a tile. Execution
of the method 900 may be preceded by extracting an initial
pixel from the bitstream. Subsequent bits may then be
processed according to the method 900.

The method 900 may include extracting 902 the next two
bits (V0) of the bitstream. If V0 is found 904 to not be
greater than zero, then the value of Sym is set to zero. The
value Sym=0 corresponds to an interleaved error of zero.
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Accordingly, the uncompressed value for the pixel being
decompressed will be the value of the preceding pixel in the
tile. If the first two bits are not found 904 to be zero, then the
method 900 may include reading 908 the next three bits (V1)
from the bitstream and computing 910 the symbol Sym
according to Sym=(V0-1)*8+V1+1.

FIG. 10 illustrates a method 1000 for obtaining the
interleaved error (e.g. PackAbsError) from the extracted
symbol Sym. If Sym is not found 1002 to be less than 24,
then Pixel (e.g. the decompressed pixel) may simply be set
equal to 24 bits of the bitstream Input[23~0], the following
24 bits of the bitstream either inclusive or exclusive of V0
and V1, depending on the embodiment.

If Sym is found 1002 to be less than 24, then, if sym is not
found 1006 to be less than 14, a size S of the interleaved
error is set 1008 equal to Sym -7 and the interleaved error
(e.g. PackAbsError) is set equal to (1<<(S-1))+Input[S-
2~0], where Input[S-2~0] are S-1 bits in the bitstream
following V0 and V1.

If Sym is found 1006 to be less than 14 and is not found
1012 to be less than 4, then the size S is set equal to Sym/2
and PackAbsError is set 1016 equal to (1<<(S-1))+
(Sym&1)+(Input[S-3~0]<<1), where Input[S-3~0] is the
S-2 bits in the bitstream following V0 and V1. In steps 1010
and 1016 the bits of Input| ]| added to the interleaved error
include any least significant bits associated with the inter-
leaved error. If Sym is found 1012 to be less than 4, then
PackAbsError is set equal to Sym.

FIG. 11 illustrates a method 1100 for extracting pixel
components from the interleaved error, such as PackAbsEr-
ror as recovered according to methods 900 and 1000. The
method 1100 may include de-interleaving the interleaved
error to obtain individual error values, e.g. the AbsErrors|i]
calculated during compression. For example the j-th bit
position of AbsError[i] may be set equal to the value at bit
position 3*j+i of PackAbsError. For example, where Pack-
AbsError includes bits b15, b14, b13, b12, b1l, b10, b9, b8,
b7, b6, b5, bd, b3, b2, bl, and b0, then AbsError[0]=b15,
b12, b9, b6, b3, b0; AbsError[1]=b13, b10, b7, b4, bl; and
AbsError[2]=b14, b11, b8, b5b2.

The signs for the AbsError[i] values may follow the bits
in the bitstream encoding the interleaved error. Accordingly,
for each non-zero AbsError[i] a sign bit may be extracted
1104 from the bitstream, e.g. in order AbsError[0] to AbsEr-
ror[2], and values of Error|i] obtained by changing the sign
as indicated by the sign bit, e.g. negating AbsError][i] if the
corresponding sign bit is 1. As noted above, some pixels may
be encoded in their raw form. Accordingly, no sign bit may
be encoded or applied to such pixels.

Using the values obtained for Error[i], a reverse color
transform (RCT) may be performed 1106 to obtain original
error values for the pixel being decompressed relative to a
prediction pixel. For example, OrgError[0]=Error[0]; Org-
Error[1]=Error[1]+OrgError[0]; and OrgError|[2]=Error{2]+
OrgError|[1]. The color values for the pixel (Current[i]) may
then be obtained by adding 1108 the error values to the
prediction pixel. For example, by calculating Current[i]=
OrgError[i]+Predicted|i], for i=1-3 for R, G, and B values,
respectively.

Referring to FIG. 12, as noted throughout tiles may be
decoded “on the fly” as tile data is retrieved by a requesting
device such as a display controller 202. In some embodi-
ments, data encoding tiles may be ordered in such a way as
to enable a bitstream of compressed tile data to be decoded
at a rate of four pixels per clock cycle.

The process of decoding described above with respect to
FIG. 11 may be characterized as including 5 stages:
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Stage 1: Get first 2 bits. If the 2 bits are zeros, repeat
previous pixel color channels;

Stage 2: Get 3 bits if necessary, pack with 2 bits of step
1 to get Sym (put stage 1 result as MSB of Sym)

Stage 3: From Sym obtain number of LSB needs to
decode PackAbsError

Stage 4: De-Interleave the PackAbsError, identify non
zero errors, get sign bits for the nonzero errors.

Stage 5: Perform Inverse Color transform and add original
errors (OrgError|i]) to the prediction pixel (Prediction[i]) to
obtain RGB component values for the current pixel.

After each of the stages 1-5, it is apparent whether the
subsequent stages need to be processed and the number of
bits from the bitstream to be processed in the subsequent
stages. Stage 5 does not require additional bits from the
bitstream.

By grouping 4 pixels together, there will be 16 groups for
a 64 pixel tile (groups 1 to 16). For each group of pixels, the
bits corresponding to each of the stages 1-5 may be grouped
together. Accordingly, a bit stream may include bit strings
Code 0-0, Code 0-1...Codei-0...Codei-j...Code 16-5,
where Code i-j includes the i-th group’s j-th stage bits. As
noted above, the bits representing some pixels may not
include code for all of the stages 1-5.

In some embodiments, the bits corresponding to any of
the stages 1-5 for each pixel may be grouped together for all
pixels of a tile. Accordingly, the method 1200 may include
inserting 1202 two bits of Huffman coding, e.g. the first two
bits of coded Sym, for all pixels in a first contiguous
segment. For a 64 pixel tile there will therefore be 2x63 bits
in the first contiguous segment since an initial pixel is not
compressed.

The method 1200 may further include inserting 1204 a
length of the bit string representing the signs of any non-zero
errors, exclusive pixels included in their raw form. In the
illustrated embodiment, these bits are inserted after the first
contiguous segment. The sign bits may advantageously be
inserted after the first contiguous segment inasmuch as it is
typically smaller (up to nine bits) than the bits corresponding
to stage three, which is used prior to the sign bits, which are
used in stage 4.

The method 1200 may include inserting 1206 an initial
pixel, e.g. a first pixel in a tile, in its raw, uncompressed form
after one or both the first contiguous segment and the length
of the sign bit string. The remaining Huffman coding for the
pixels of the tile, other than the initial pixel, may be grouped
into a second contiguous segment. The remaining Huffman
coding may include any bits of coded Sym other than the
first two bits included in the first contiguous segment. The
second contiguous segment has variable length. However,
inasmuch as the length of the second contiguous segment
can be determined using the first segment, a length of the
second contiguous segment need not be included.

The method 1200 may include inserting 1210 a bit string
including sign bits for any non-zero errors. A third contigu-
ous segment including encodings of any L.SB for the pixels
of the tile may be inserted 1212 as well. Inasmuch as the
number of LLSB for the pixels may be zero or a variable
number of non-zero values, the length of the third contigu-
ous segment is variable. The length of the third contiguous
segment can be determined using the first and second
contiguous segments, accordingly, a length of the third
contiguous segment need not be included. The start point of
the third contiguous segment may be determined using the
length inserted at step 1204.

The various segments may have various orderings in a
bitstream or in a stored representation of a compressed tile.
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In one embodiment the compressed tile may be arranged in
the following order: the first contiguous segment, the length
of the sign bit string, the initial pixel, the second contiguous
segment, the sign bit string, and the third contiguous seg-
ment.

With the bit strings representing the compressed pixels
arranged in this fashion, a throughput of four pixels per
clock cycle may be readily achieved. In particular, once the
k-th stage of the j-th group is decoded, starting points in the
bitstream for the bits corresponding to each stage of the
(k+1)-th stage of the j-th group are known. Likewise, a start
point in each segment is known for the k-th stage of the
(j+1)-th group. In this manner, parallelization of the decod-
ing of the pixels of a tile is possible and a throughput of four
pixels per clock cycle can be readily achieved.

As is apparent in the detailed description of the compres-
sion algorithm in FIGS. 4-7, each pixel will not necessarily
include data corresponding each of the decompression
stages 1-5. For example, where the first two bits of coded
Sym encode the entire Sym for a pixel, the second contigu-
ous segment may not include bits for that pixel.

As noted above, the third contiguous segment has variable
length. In some embodiments, if the third contiguous seg-
ment has an odd number of bits, one or more of the sign bits
may be added to the third contiguous segment such that it
has an even number of bits or ends on a byte boundary, 16
bit boundary, or some other boundary. Accordingly, for
example, if PackAbsError size is found to be an even
number over 6 or 5 (e.g. 5, 8, 10, 12, 14, or 16), then the
stage 3 bits may be understood to include one sign bit and
that sign bit should not be repeated in the sign bit string (e.g.
stage 4 bits).

As also noted above, where the interleaved error is large,
the raw RGB data for a pixel may be included in its raw
form. In such instances, 16 most significant bits of the raw
pixel data may be included in stage 3 for that pixel (the third
contiguous segment) and the remaining 8 LSB may be
included in stage 4 (e.g. with the sign bits). The number of
bits included in the sign bit string may be extracted by
evaluating the value of Sym extracted from the first con-
tiguous segment for the pixel or from both the first and
second contiguous segments. For example, where Sym
indicates that a pixel has been included in its raw form, the
16 MSB may be retrieved from the third contiguous segment
and the remaining 8 LSB can be retrieved from the sign bit
string, e.g. the stage 4 bits. Inasmuch as stage 3 has a very
variable length (from O to 24*4) and the start point of the
stage 3 bits is variable, the above-described approach advan-
tageously ensures that the each pixel in the group starts at an
even offset point.

As noted above, a size of the third contiguous segment
may be determined using data from the first and second
contiguous segments. In some embodiments a size of the
stage 3 bits (the LSB) may be encoded. For example, for a
current pixel, if Error[0] and Error[1] are zero, the size of the
stage 3 bits for Error[2] may be packed in place of the sign
bits for Error[0] and Error[1]. For example, the sizes of stage
3 for various pixels, i.e. Sym values, are listed below in
Table 1.

TABLE 1

Sym Values vs. PackAbsErrorSize and Stage 3 Bit Length

Sym PackAbsErrorSize Stage 3 bit length
0~7 0~3 0

8,9 4 2

10, 11 5 4 (one sign bit packed in)
12,13 6 4
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TABLE 1-continued

Sym Values vs. PackAbsErrorSize and Stage 3 Bit Length

Sym PackAbsErrorSize Stage 3 bit length

14 7 6

15 8 8 (one sign bit packed in)
16 9 8

17 10 10(one sign bit packed in)
18 11 10

19 12 12(one sign bit packed in)
20 13 12

21 14 14(one sign bit packed in)
22 15 14

23 16 16(one sign bit packed in)
24 =17 16 (MSB 16 bits of raw data)

Referring to FIG. 13, the methods described hereinabove
illustrate compression and decompression techniques for
pixels including RGB components. FIG. 13 illustrates a
method 1300 for compressing pixels including RGBa com-
ponents.

The method 1300 may include inserting 1302 two bits of
Huffman coded symbols, such as a first contiguous segment
of such bits in the same manner as for the method 1200.
Likewise a length of non-zero sign bits for the pixels of a tile
may be inserted 1304, in the same manner as for the method
1200. An initial pixel (RGB values thereof) may also be
inserted 1306. An alpha value for the initial pixel may also
be inserted 1306.

Alpha values for remaining pixels may be compressed in
groups, such as groups of 4 pixels. The representation for a
group of pixels may include three stages. As for the method
1200, the bits for each stage may be grouped together, e.g.
all stage 1 bits in a contiguous segment, all stage 2 bits in
one contiguous segment, and all stage 3 bits in one contigu-
ous segment.

Stage 1 for a group of pixels may include a bit indicating
if an error for any pixel of the group of pixels is not zero,
where the error for a pixel is a difference between the alpha
value for the pixel and the initial alpha value. For example,
a stage 1 bit equal to 0 indicates that all errors for all pixels
in the group are equal to zero. A stage 1 bit equal to 1
indicates that at least one of the errors is not equal to zero.

Stage 2 for a group of pixels may include three bits for
each pixel indicating a size of the error for each pixel. For
example, the error may be a value from O to 7 (b111) for each
pixel. If the error for a pixel is greater than 7, the stage 2 bits
for that pixel may be set equal to 7.

For pixels with errors other than 0 and 7, the stage 3 bits
may include a sign bit indicating the sign of the error and the
least significant bit (LSB) of the error. For pixels with errors
equal to 0, no sign or LSB is included in stage 3. For pixels
with errors larger than 7, stage 3 will include the raw alpha
value.

Referring again to FIG. 13, the method 1300 may include
inserting 1310 the stage 1 bits, inserting 1312 a length of the
stage 3 bits, inserting 1314 the stage 2 bits, and inserting
1316 the stage 3 bits. As noted above, inserting the bits for
a stage may include inserting all bits for that stage for all
pixels in the tile. Inasmuch as the length of stage 2 can be
readily determined from the stage 1 bits (e.g. 9 bits for a
stage 2 bit of 1), a length of stage 2 may be omitted in some
embodiments.

The method 1300 may further include inserting 1318
remaining Huffman code (e.g. remaining bits of Sym), e.g.
a second contiguous segment as for the method 1200. The
method 1300 may also include inserting 1320 signs for non
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zero interleaved errors such as a string of sign bits, and
inserting 1322 encoded least significant bits (LSB), such as
a third contiguous segment in the same manner as for the
method 1200.

As an example, a bit stream or stored representation of a
compressed tile according to the method 1300 may be
arranged in the following order: the first contiguous seg-
ment, the length of the sign bit string, the initial pixel, the
initial alpha value, stage 1 alpha bits, a length of stage 3
alpha bits, the stage 2 alpha bits, and the stage 3 alpha bits,
the second contiguous segment, the sign bit string, and the
third contiguous segment.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative, and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims, rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

1. An apparatus for data compression, the apparatus
comprising an electronic device programmed to:

for each pixel of a plurality of pixels:

calculate errors for components of the each pixel rela-
tive to components of a prediction pixel;

interleave the errors to generate an interleaved error;

generate a first symbol by Huffman encoding at least a
most significant portion of the interleaved error, the
most significant portion of the interleaved error
having a fixed length;

if the first symbol does not encode the entire inter-
leaved error, generate a second symbol by Huffman
encoding a least significant portion of the interleaved
error separately from the most significant portion of
the interleaved error, the least significant portion of
the interleaved error including least significant bits in
excess of the fixed length of the most significant
portion; and

store the first symbol and any second symbol as a
representation of the each pixel in a memory device
in association with the prediction pixel;

wherein the electronic device is programmed to store the

first symbol and any second symbol as a representation
of the each pixel in the memory device in association
with the prediction pixel by;
storing the first symbol in a first segment including first
symbols for all pixels of the plurality of pixels; and

storing any second symbol in a second segment including
any second symbols for all pixels of the plurality of
pixels;

wherein all of the first symbols of the plurality of pixels

are stored contiguously in the first segment and all of
the second symbols of the plurality of pixels are stored
contiguously in the second segment, the second seg-
ment being different from the first segment.

2. The apparatus of claim 1, wherein the electronic device
is programmed to interleave the errors to generate the
interleaved error by interleaving absolute values of the
errors.

3. The apparatus of claim 2, wherein the electronic device
is programmed to store, with the first symbol, sign bits for
any of the errors that are not equal to zero.

4. The apparatus of claim 1, wherein the electronic device
is programmed to generate the interleaved error by inter-
leaving a color transform of the errors.
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5. The apparatus of claim 1, wherein the electronic device
is programmed to generate the first symbol encoding at least
a most significant portion of the interleaved error by per-
forming Huffman coding using a Huffiman table having no
more than 25 cases.

6. The apparatus of claim 1, wherein the prediction pixel
is a pixel preceding the each pixel in the plurality of pixels.

7. The apparatus of claim 1, wherein the plurality of pixels
define a tile of a plurality of tiles, the plurality of tiles
defining a frame.

8. The apparatus of claim 1, wherein a number of pixels
of the plurality of pixels is equal to a line buffer size of a
graphics system component operably coupled to the elec-
tronic device.

9. The apparatus of claim 1, wherein the electronic device
is programmed to interleave the errors to generate the
interleaved error by interleaving absolute values of the
errors, the electronic device further programmed to:

store sign bits for any non-zero errors of the errors in a

third segment, the third segment including sign bits for

any non-zero errors of the errors for all pixels of the
plurality of pixels.

10. A method for data compression, the method compris-
ing:

for each pixel of at least a portion of a plurality of pixels,

performing, by an electronic device:

calculating errors for components of the each pixel
relative to components of a preceding pixel;

interleaving absolute values of the errors to generate an
interleaved error;

Huffman coding the interleaved error by encoding a
first portion in a first symbol portion and, if the
interleaved error has a number of bits in excess of the
first portion, encoding a second portion of the inter-
leaved error separately from the encoding of the first
portion of the interleaved error, the second portion
being separately encoded in a second symbol;

if the first and second symbol portions do not encode
the entire interleaved error, generating a third symbol
portion by encoding a third portion of the interleaved
error separately from the encoding of the first and
second portions, the first portion including more
significant bits of the interleaved error than the
second portion and the second portion including
more significant bits of the interleaved error than the
third portion; and

streaming the first and second symbol portions, any
third symbol portion, and signs of any of the errors
that are not equal to zero;

wherein streaming the first and second symbol portions,

any third symbol portion, and signs of any of the errors

that are not equal to zero further comprises:
streaming the first symbol portions of all of the plurality
of pixels as a first contiguous segment;

streaming the second symbol portions of all of the plu-

rality of pixels as a second contiguous segment separate

from the first contiguous segment;
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obtaining a third contiguous segment including all of any
third symbol portions, the third contiguous segment
being separate from the first and second contiguous
segments;

if a length of the third contiguous segment is odd, moving

one bit of the third contiguous segment to the second
contiguous segment; and

streaming the signs of the plurality of pixels as a fourth

contiguous segment.

11. The method of claim 10, wherein streaming the first
and second symbol portions, any third symbol portion, and
signs of any of the errors that are not equal to zero further
comprises:

streaming the first symbol portions of the plurality of

pixels as a first contiguous segment; followed by
streaming the second symbol portions of the plurality of
pixels as a second contiguous segment, followed by
streaming any third symbol portions of the plurality of
pixels as a third contiguous segment, followed by
streaming the signs of the plurality of pixels as a fourth
contiguous segment.

12. The method of claim 11, further comprising inserting
a length of the third contiguous segment between the first
and second contiguous segments.

13. The method of claim 11, further comprising inserting
an initial pixel between the first and second contiguous
segments.

14. The method of claim 11, wherein the fourth contigu-
ous segment is inserted between the second and third
contiguous segments.

15. The method of claim 10, wherein the plurality of
pixels define a tile of a plurality of tiles.

16. The method of claim 15, wherein the plurality of tiles
define a frame.

17. The method of claim 15, wherein a size of the tiles of
the plurality of tiles is equal to a size of a line buffer of a
graphics processing system.

18. The method of claim 14, wherein streaming the first
and second symbol portions, any third symbol portion, and
signs of any of the errors that are not equal to zero further
comprises:

streaming the first and second symbol portions, any third

symbol portion, and signs of any of the errors that are
not equal to zero to a decoder in response to a request
from a second electronic device; and

transmitting a decoded pixel to the second electronic

device.

19. The method of claim 18, wherein the second elec-
tronic device is a display controller.

20. The method of claim 10, wherein Huffman coding the
interleaved error to generate the first symbol portion and the
second symbol portion comprises Huffman coding the inter-
leaved error using a Huffman table with no more than 25
cases.



